Skip to main content
Testing. You are viewing the public testing version of GCN. For the production version, go to
New Announcement Feature, Code of Conduct, Circular Revisions. See news and announcements

GCN Circular 26198

GRB 191106A: Swift-BAT refined analysis
2019-11-07T13:20:21Z (5 years ago)
Amy Lien at GSFC <>
S. D. Barthelmy (GSFC), H. A. Krimm (NSF),
S. Laha (GSFC/UMBC), A. Y. Lien (GSFC/UMBC),
C. B. Markwardt (GSFC), F. E. Marshall (NASA/GSFC),
D. M. Palmer (LANL), T. Sakamoto (AGU),
M. Stamatikos (OSU), T. N. Ukwatta (LANL)
(i.e. the Swift-BAT team):

Using the data set from T-61 to T+242 sec from the recent telemetry
we report further analysis of BAT GRB 191106A (trigger #933515)
(Marshall et al., GCN Circ. 26177).  The BAT ground-calculated position is
RA, Dec = 269.356, 46.046 deg which is
   RA(J2000)  =  17h 57m 25.4s
   Dec(J2000) = +46d 02' 44.7"
with an uncertainty of 1.7 arcmin, (radius, sys+stat, 90% containment).
The partial coding was 95%.

The mask-weighted light curve shows many overlapping pulses. The burst
starts at ~T-1.3 s and ends at ~T+2.4 s. T90 (15-350 keV) is 3.42 +- 0.35
(estimated error including systematics).

The time-averaged spectrum from T-1.31 to T+2.38 sec is best fit by a simple
power-law model.  The power law index of the time-averaged spectrum is
0.89 +- 0.17.  The fluence in the 15-150 keV band is 3.2 +- 0.3 x 10^-7
The 1-sec peak photon flux measured from T-0.02 sec in the 15-150 keV band
is 1.1 +- 0.2 ph/cm2/sec.  All the quoted errors are at the 90% confidence

The results of the batgrbproduct analysis are available at
Looking for U.S. government information and services? Visit