Skip to main content
Testing. You are viewing the public testing version of GCN. For the production version, go to
New Announcement Feature, Code of Conduct, Circular Revisions. See news and announcements

GCN Circular 21611

LIGO/Virgo G298389: INTEGRAL search for a prompt gamma-ray counterpart
2017-08-20T08:27:15Z (7 years ago)
Volodymyr Savchenko at APC,Paris <>
V. Savchenko (ISDC, University of Geneva, CH)
on behalf of the INTEGRAL group:
S. Mereghetti (IASF-Milano, Italy),
C. Ferrigno ((ISDC, University of Geneva, CH),
E. Kuulkers (ESTEC/ESA, The Netherlands),
A. Bazzano (IAPS-Roma, Italy), E. Bozzo,
T. J.-L. Courvoisier (ISDC, University of Geneva, CH)
S. Brandt (DTU - Denmark) R. Diehl (MPE-Garching, Germany)
L. Hanlon (UCD, Ireland) P. Laurent (APC, Saclay/CEA, France)
A. Lutovinov (IKI, Russia) J.P. Roques (CESR, France)
R. Sunyaev (IKI, Russia) P. Ubertini (IAPS-Roma, Italy)

We investigated serendipitous INTEGRAL observations carried out at the
time of the LIGO/Virgo burst candidate G298389.  The satellite was
pointing at RA=193.46 Dec=-25.644, 43 degrees from far from the peak
of high-probability area of LIGO localization. Depending on the
location within LIGO 90% confidence region the best upper limit is set
by the anti-coincidence shield of the spectrometer on board of
INTEGRAL (SPI/ACS), IBIS/ISGRI, or IBIS/PICsIT. The localization of
G298389 is not optimal for SPI-ACS observation, since part of the
localization it is occulted for SPI-ACS by the coded mask of IBIS. For
harder source spectra, IBIS, and especially IBIS/PICsIT reaches
sensitivity close to optimal in this orientation.

The INTEGRAL IBAS automatically inspects both ISGRI Field
of View and all-sky SPI-ACS light curve. It did not reveal any
significant excess above the background.

We investigated the SPI-ACS, IBIS/PICsIT, and IBIS/ISGRI light curves
between -500 and +500 s from the trigger time (2017-08-19 15:50:46
UTC) on temporal scales from 0.1 to 100 s, and found no evidence for
any significant deviation from the background.  We estimate a median
3-sigma upper limits in 90% LIGO localization region of 1.9e-6 erg/cm2
(75-2000 keV) assuming a duration of 8s and Band model parameters
alpha=-1, beta=-2.5, and E_ peak = 300 keV.  To derive a limit for a
typical short burst with 1 s duration, we use a harder cutoff power
law spectrum with a photon index of -0.5 and an Epeak = 500 keV. We
find a median limiting fluence of 4.0e-7 erg/cm2 (75-2000 keV) at 3
sigma c.l.
Looking for U.S. government information and services? Visit