Skip to main content
Testing. You are viewing the public testing version of GCN. For the production version, go to
New Announcement Feature, Code of Conduct, Circular Revisions. See news and announcements

GCN Circular 16191

GRB 140428A: GROND observations
2014-04-30T22:02:44Z (10 years ago)
Karla Varela at MPE <>
F. Knust, K. Varela, J. Greiner (MPE Garching), and D. A. Kann
(TLS Tautenburg) report on behalf of the GROND team:

We observed the field of GRB 140428A (Swift trigger 597519; Kocevski et
al., GCN #16177) simultaneously in g'r'i'z'JHK with GROND (Greiner et al.
2008, PASP 120, 405) mounted at the 2.2 m MPG telescope at La Silla
Observatory (Chile).

Observations started at 00:43 UT on 2014-04-29, 2 hours after the GRB
trigger. They were performed at an average seeing of 1.4" and at an
average airmass of 1.9.

We found a single point source within the 1.7" Swift-XRT error circle
reported by Page et al. (GCN #16178) at

RA (J2000.0) = 12h 57m 28.39s
DEC (J2000.0) = + 28d 23' 06.4"

with an uncertainty of 0.5" in each coordinate.

This source is consistent with the one reported by Perley (GCN #16180).

Based on the first 1133 s of total exposures in g'r'i'z' and 1920 s in
JHK, we estimate preliminary magnitudes (all in AB system) of

g' > 24.4 mag,
r' = 23.6 +/- 0.2 mag,
i' = 21.7 +/- 0.1 mag,
z' = 21.5 +/- 0.1 mag,
J > 19.7 mag,
H > 20.6 mag, and
K > 19.1mag.

From our data, fading can not be established. We note that our r'-band 
magnitude is similar to that reported by Perley (GCN #16180) at a mid-time
of 7.5 hrs after the GRB.

The spectral energy distribution is best-fit by a straight power-law  and
a sharp cut-off below
the i'-band which cannot be modelled with extinction alone. If this is the
GRB afterglow, the cut-off corresponds to a photometric redshift of z =
4.8 +-0.3, consistent with the Keck spectroscopy
as reported by Perley (GCN #16181).

Given magnitudes are calibrated against SDSS (griz) as well as 2MASS 
(JHK) field stars and are not corrected for the expected Galactic
foreground extinction corresponding to a reddening of E_(B-V) = 0.01 mag
in the direction of the burst (Schlegel et al. 1998).
Looking for U.S. government information and services? Visit