Skip to main content
Testing. You are viewing the public testing version of GCN. For the production version, go to
New Announcement Feature, Code of Conduct, Circular Revisions. See news and announcements

GCN Circular 13452

GRB 120711A: Fermi LAT Detection
2012-07-12T02:03:05Z (12 years ago)
Daniel Kocevski at SLAC <>
Daniel Kocevski (Stanford Univ.) and Giacomo Vianello (CIFS/SLAC), Nicola Omodei (Stanford Univ.), and Seth Digel (SLAC) report on behalf of the Fermi LAT Team:

Fermi-LAT has detected high energy emission from the bright GRB 120711A in ground analysis. The GRB triggered the Fermi-GBM on July 11th, 2012 at 02:44:53.29 UTC (trigger 363667496/120711115, Gruber et al. GCN 13437) and was bright enough to result in a spacecraft autonomous repoint.

At the time of the GBM trigger, the angle between the GRB position and the LAT bore-sight was 134.4 degrees for the duration of the prompt emission, and remained outside the Fermi-LAT nominal field of view for an additional ~600 seconds.

A preliminary maximum-likelihood analysis of the E>75MeV P7TRANSIENT_V6 LAT data centered on the XRT position reported by Beardmore et al. (GCN 13442) generated for the interval T0+600s to T0+1100s revealed a significant transient source, with a spectrum well described by a power law of index -2.0 +/ 0.3 (68% C.L. statistical only). These results are in agreement with those found by Tam et al. (GCN 13444).  Using the data covering T0+600s to T0+1100s, we obtained the best LAT on-ground localization of:

RA(J2000) = 94.7 deg
Dec(J2000) = -70.9 deg

with an error radius of 0.16 deg (90% containment, statistical error only), which is 0.09 deg from the XRT position, and 0.07 deg from the position reported by Tam et al. (GCN 13444).

We note that this position is ~1.4 degrees away from the known variable gamma-ray source 2FGL J0601.1-7037, which has been associated with the blazar PKS 0601-70. In order to understand if the observed excess can be due to a brightening of the blazar we considered two nested models for our data, one including just the blazar, and one including both the blazar and a new source (the GRB). Our data favor the latter model, with the fit converging to a solution with a negligible contribution from the blazar, as expected from the mean flux reported in the Fermi 2FGL catalog (Nolan et al., 2012). An analysis using E>75MeV P7TRANSIENT_V6 data covering an interval before the burst (T0-6000s to T0-2000 s) shows no significant emission at the location of the blazar. Thus, 2FGL J0601.1-7037 is unlikely to be the source of the excess.

We caution against the use of data after ~T0+2600 s, because of a large Zenith angle of the GRB, potentially resulting in a strong contamination from terrestrial gamma-rays originating from charged particle interactions with Earth's atmosphere.

The Fermi-LAT point of contact for this burst is Daniel Kocevski
Looking for U.S. government information and services? Visit